EconPapers    
Economics at your fingertips  
 

Effects of temperature-dependent viscosity on thermal drawdown-induced fracture flow channeling in enhanced geothermal systems

Yujie Liu, Hui Wu, Arash Dahi Taleghani, Kun Zhang, Jinjiang Zhang, Ming Yang and Bo Zhang

Renewable Energy, 2024, vol. 235, issue C

Abstract: Harnessing geothermal energy from an enhanced geothermal system (EGS) highly depends on fracture flow and heat transport processes. Thermal drawdown-induced thermal stress has been characterized as a major reason for severe fracture flow channeling (short-circuiting), which further leads to premature thermal breakthrough and impairs long-term thermal performance. In the present study, we quantitatively analyzed a potential flow channeling mitigation mechanism, i.e., the increase of water viscosity with temperature reduction. Through a field-scale single-fracture EGS model that incorporates thermal-hydro-mechanical coupled processes and temperature-dependent water viscosity, we demonstrate that the increase of water viscosity during heat extraction promotes a dispersed fracture flow pattern, which can effectively mitigate thermal drawdown-induced flow channeling and improve long-term thermal performance. The mitigation effect is more noticeable for homogeneous aperture scenarios than for heterogeneous aperture scenarios, especially in the early period of heat production. With a higher in-situ stress and smaller rock Young's modulus, the flow channeling effect of thermal stress becomes weak, and therefore the temperature-dependent viscosity exhibits a more significant flow channeling mitigation effect. The results from the current study provide valuable insights into the optimization of fracture flow and heat transport to achieve more efficient and sustainable energy production from EGSs.

Keywords: Enhanced geothermal system; Thermal stress; Flow channeling; Temperature-dependent viscosity; Flow redistribution; Thermal performance (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124013429
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:235:y:2024:i:c:s0960148124013429

DOI: 10.1016/j.renene.2024.121274

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124013429