EconPapers    
Economics at your fingertips  
 

Experimental and process simulation on solid fuel chemical looping cascade utilization conversion technology aiming hydrogen generation

Heyu Li, Zhe Sun and Yan Cao

Renewable Energy, 2024, vol. 235, issue C

Abstract: In this work, a novel chemical looping process towards hydrogen generation based on the cascade utilization of components in solid fuels (like biomass and coal) with different reactivity (pyrolysis gas and char) was proposed, aiming for energy conversion from carbon-intensive fuels to carbon-free renewable hydrogen via the material migration of iron oxides. Biomass, represented by sawdust, is an important part among various renewable energy sources and a typical solid fuel with great potential. Therefore, in the most concerned reduction stage, experiments were conducted mainly using sawdust to investigate the effects of various parameters (temperature, oxygen/fuel ratio, residence time) on the carbon conversion involved in char in the primary reduction stage, gas/solid spatiotemporal distribution in the deep reduction stage and subsequent H2 generation performance, and kinetic parameters were fitted for different reduction stages. Process simulation was further conducted based on the actual experimental results. The proposed process demonstrated satisfactory applicability to solid fuels with different characteristics, and biomass was more suitable for hydrogen production. Compared with chemical looping combustion process, a significant improvement of sawdust-fueled energy conversion efficiency from 33.26 % to 51.76 % and a decrease of OCs theoretical circulation rate (27.77 %) were achieved under the chemical looping process aiming hydrogen generation.

Keywords: CO2 capture; Chemical looping technology; Solid fuel; Renewable energy; Cascade utilization; Hydrogen production (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124013594
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:235:y:2024:i:c:s0960148124013594

DOI: 10.1016/j.renene.2024.121291

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124013594