EconPapers    
Economics at your fingertips  
 

Microalgae bio-reactive façade: System thermal–biological optimization

Victor Pozzobon

Renewable Energy, 2024, vol. 235, issue C

Abstract: This article explores numerically the biotechnological performances of microalgae biofaçade. The model computes the system’s thermal behavior using a radiative-convective approach accounting for location on Earth and actual weather data. In a coupled manner, it simulates the microalgae culture behavior, i.e. light-driven growth and cell pigment content acclimation. In addition, it features refinement such as wavelength-dependent biomass optical properties and thermal-modulated biological rates. Thanks to this model, operation strategies and design possibilities were evaluated using actual weather data for a biofaçade module deployed in Marseille in 2023. Investigations revealed that a semi-batch mode of operation, while simplistic, is the most efficient way to operate a biofaçade if sole biological production is considered (about 18.0 ± 0.9 kg per year, 2.44 ± 0.12 g/L output concentration). However, if intended as an office glazing, turbidostat mode of operation should be preferred for aesthetic and visual comfort reasons (about 19.1 ± 1.1 kg per year, 0.64 ± 0.07 g/L output concentration). System optimization also confirmed the experimental observation that the system could be prone to overheating. Nevertheless, while overheating can be mitigated by increasing the reservoir thickness, this strategy is detrimental to the average output concentration. Finally, location-specific optimization revealed that a standard biofaçade module could be deployed over France, and system performances are derived for the whole country thanks to the weather forecast agency data.

Keywords: Microalgae; Biofaçade; Production; Biological model; Temperature; Optimization (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124014459
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:235:y:2024:i:c:s0960148124014459

DOI: 10.1016/j.renene.2024.121377

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124014459