Investigation of the transient characteristics of the Francis turbine during runaway process
Yanyan Li,
Longgang Sun and
Pengcheng Guo
Renewable Energy, 2024, vol. 237, issue PC
Abstract:
Transient hydraulic phenomena, including flow separation, vortex structure and high amplitude pressure fluctuation, occur in the turbine during runaway process, significantly affecting the safe and stable operation. To clarify the unsteady flow characteristics in the runaway process, this paper focus on a low head model Francis turbine, examining the transient flow dynamics from rated speed to runaway speed. Numerical simulations show good agreement with experimental test results for the runaway speed and discharge. Results identify that two typical cavitation vortex structures within the runner: A cloud cavitation vortex near the hub on the pressure side and a columnar cavitation vortex on the suction side. Further analysis reveals that the pressure fluctuation induced by the former are low-frequency (0.08fn and harmonics), whereas those induced by the latter are high-frequency (1.16fn and harmonics). Entropy production analysis in homogeneous flow indicates that energy dissipation mainly occurs in the runner and draft tube during the runaway process. Turbulent entropy production within the turbine comprises a significant portion of the total entropy production. Additionally, areas around the recirculation zone exhibit considerable high entropy production, indicating that the energy of the fluid is dissipated by cavitation vortex structures generated in these areas. Additionally, the analysis indicates that the entropy production rate correlates with vapor generation, underscoring the cavitation vortex as the primary cause of energy dissipation. This investigation can provide valuable insights into the energy dissipation mechanisms during the runaway process.
Keywords: Francis turbine; Runaway; Cavitation; Pressure fluctuation; Entropy production (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124019086
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124019086
DOI: 10.1016/j.renene.2024.121840
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().