Latent heat thermal energy storage using cylindrical capsule: Numerical and experimental investigations
A. Felix Regin,
S.C. Solanki and
J.S. Saini
Renewable Energy, 2006, vol. 31, issue 13, 2025-2041
Abstract:
This paper is aimed at analyzing the melting behavior of paraffin wax as a phase change material (PCM) encapsulated in a cylindrical capsule, used in a latent heat thermal energy storage system with a solar water heating collector. The heat for melting of PCM in the capsule is provided by hot water surrounding it. Since it is observed experimentally that the phase change occurs in a range of temperature, the present analysis considers this range instead of constant phase change temperature and the deviation between the results of these two is presented. The numerical analysis has been carried out by using enthalpy method and the results are verified with the experimental data. The experiments have been done by visualization technique without disturbing the actual process of melting. Three distinct stages of melting process have been identified as revealed by visualization studies. Results indicate that the melting process is chiefly governed by the magnitude of the Stefan number, Ste, phase change temperature range and the capsule radius. The analysis shows that the agreement between analytical and experimental results is significantly improved when the results are obtained considering phase change temperature range and the natural convection in the liquid phase instead of considering the process to be conduction dominated only.
Keywords: Cylindrical capsule; Phase change material; Enthalpy method; Paraffin wax; Thermal energy storage; Visualization study (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148105003216
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:31:y:2006:i:13:p:2025-2041
DOI: 10.1016/j.renene.2005.10.011
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().