EconPapers    
Economics at your fingertips  
 

A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector

Ya-Ling He, Jie Xiao, Ze-Dong Cheng and Yu-Bing Tao

Renewable Energy, 2011, vol. 36, issue 3, 976-985

Abstract: A coupled simulation method based on Monte Carlo Ray Trace (MCRT) and Finite Volume Method (FVM) is established to solve the complex coupled heat transfer problem of radiation, heat conduction and convection in parabolic trough solar collector system. A coupled grid checking method is established to guarantee the consistency between the two methods and the validations to the coupled simulation model were performed. Firstly, the heat flux distribution on the collector tube surface was investigated to validate the MCRT method. The heat flux distribution curve could be divided into 4 parts: shadow effect area, heat flux increasing area, heat flux reducing area and direct radiation area. The heat flux distribution on the outer surface of absorber tube was heterogeneous in circle direction but uniform in axial direction. Then, the heat transfer and fluid flow performance in the LS-2 Solar Collector tube was investigated to validate the coupled simulation model. The outlet temperatures of the absorber tube predicted by the coupled simulation model were compared with the experimental data. The absolute errors are in the range of 1.5–3.7°C, and the average relative error is less than 2%, which demonstrates the reliability of the coupled method established in this paper. At last, the concentrating characteristics of the parabolic trough collectors (PTCs) were analyzed by the coupled method, the effects of different geometric concentration ratios (GCs) and different rim angles were examined. The results show the two variables affect the heat flux distribution. With GC increasing, the heat flux distributions become gentler, the angle span of reducing area become larger and the shadow effect of absorber tube become weaker. And with the rim angle rising, the maximum value of heat flux become lower, and the curve moves towards the direction φ=90°. But the temperature rising only augments with GC increasing and the effect of rim angle on heat transfer process could be neglected, when it is larger than 15°. If the rim angle is small, such as θrim=15°, lots of rays are reflected by glass cover, and the temperature rising is much lower.

Keywords: Monte Carlo Ray Trace; Finite Volume Method; Coupling heat transfer; Parabolic trough collectors (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (115)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148110003411
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:36:y:2011:i:3:p:976-985

DOI: 10.1016/j.renene.2010.07.017

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:36:y:2011:i:3:p:976-985