EconPapers    
Economics at your fingertips  
 

Microstructure evolution of yttria-doped ceria in reducing atmosphere

Zhi-Peng Li, Toshiyuki Mori, Graeme John Auchterlonie, Jin Zou and John Drennan

Renewable Energy, 2013, vol. 50, issue C, 494-497

Abstract: The evolution of microstructures of yttria-doped ceria (YDC) upon the heating at 500 °C in a reducing atmosphere has been characterized. Even though obvious cracks will not appear at such a low temperature, local microstructures will change in terms of superstructure formation. Electron energy-loss near-edge structure (ELNES) analysis reveals that newly appeared superstructures formation is mainly attributed to the reduction of Ce4+ to Ce3+. Furthermore, the ELNES at the oxygen K-edge illustrates that such superstructures have enhanced oxygen vacancy ordering level, compared to non-H2-treated YDC samples. This type of long-range ordered structure may act as trap/sink centers for mobile oxygen vacancies, the charge carrier of oxide ionic conductors, which is detrimental to solid oxide fuel cell performance. In the light of this study, it elucidates that microstructural evolution under an operating environment may be one possible reason for the degradation of the fuel cells.

Keywords: Ceria; Electron energy loss spectroscopy; Superstructure; Solid oxide fuel cell; Transmission electron microscopy (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148112004454
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:50:y:2013:i:c:p:494-497

DOI: 10.1016/j.renene.2012.07.019

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:50:y:2013:i:c:p:494-497