Numerical studies on power generation from co-produced geothermal resources in oil fields and change in reservoir temperature
Bin Gong,
Hongbin Liang,
Shouliang Xin and
Kewen Li
Renewable Energy, 2013, vol. 50, issue C, 722-731
Abstract:
The effects of injection rate and the temperature of injected (or re-injected) water on reservoir temperature during power generation by utilizing hot fluids co-produced from oil and gas field were studied using a numerical simulation approach. The chosen target reservoir was LB oil reservoir from Huabei oil field. The reservoir temperature was about 120 °C. It has been found that there was significant temperature decline if the water injection rate was greater than a specific value and the temperature of injected water was less than a specific value. Also studied were the effect of water injection rate on oil production and water cut in LB oil reservoir. The results demonstrated that the oil production increased with the water injection rate, which is reasonable and would be helpful to conduct the power generation project in LB oil reservoir from the economic point of view.
Keywords: Geothermal power generation; Numerical simulation; Co-produced geothermal resource; Reservoir temperature; Oil fields (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148112004521
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:50:y:2013:i:c:p:722-731
DOI: 10.1016/j.renene.2012.07.026
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().