EconPapers    
Economics at your fingertips  
 

Evaluation of the effect of the dilute acid hydrolysis on sugars release from olive prunings

Juan F. García Martín, Sebastián Sánchez and Manuel Cuevas

Renewable Energy, 2013, vol. 51, issue C, 382-387

Abstract: Olive prunings are considered a potential lignocellulosic raw material for production of energy (fuel-ethanol, pellets...) and other value-added products as an alternative to starch-containing feedstock. From an economic point of view, it is particularly important to recover sugars from hemicellulose. The use of dilute acid can lead to rapid hydrolysis conditions, providing hydrolysates rich in d-glucose and d-xylose that do not require further treatment. The effect of the residence time, temperature and sulphuric acid concentration on the formation of d-glucose and d-xylose was estimated by response surface methodology. Batch hydrolysis was carried out at very low temperatures (70–90 °C) and H2SO4 concentrations from 0 to 1 N, sampling at different times from 0 to 300 min. According to statistical analysis, all of the three parameters had significant interaction effects on sugars production. Results illustrated that the highest concentrations of d-glucose and d-xylose were found at the highest levels of temperature, acid concentration and residence time assayed. In these conditions, the maximum predicted yields expressed as g of sugar per 100 g of dry matter fed were 0.13 in d-glucose (about 40% of maximum attainable) and 0.10 in d-xylose (about 60% of the potential yield).

Keywords: Acid hydrolysis; d-glucose; Olive prunings; Sulphuric acid; d-xylose (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148112006283
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:51:y:2013:i:c:p:382-387

DOI: 10.1016/j.renene.2012.10.002

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:51:y:2013:i:c:p:382-387