EconPapers    
Economics at your fingertips  
 

Fermentative hydrogen production by a new mesophilic bacterium Clostridium sp. 6A-5 isolated from the sludge of a sugar mill

Jinling Cai, Qi Wu, Guangce Wang and Chaobin Deng

Renewable Energy, 2013, vol. 59, issue C, 202-209

Abstract: The fermentative hydrogen production capability of the newly isolated Clostridium sp. 6A-5 bacterium was studied in a batch cultivation experiment. Various culture conditions (temperature, initial pH, and glucose concentration) were evaluated for their effects on cell growth and hydrogen production (including the yield and rate) of Clostridium sp. 6A-5. Optimal cell growth was observed at 40 °C, initial pH 7.5–8, and glucose concentration 16–26 g/L. The optimal hydrogen yield was obtained at 43 °C, initial pH 8, and glucose concentration 10–16 g/L. Hydrogen began to evolve when cell growth entered the mid-exponential phase and reached the maximum production rate at the late exponential and stationary phases. The maximum hydrogen yield, and rate were 2727 mL/L, and 269.3 mL H2/L h, respectively. These results indicate that Clostridium sp. 6A-5 is a good candidate for mesophilic fermentative hydrogen production.

Keywords: Biohydrogen production; Clostridium; Isolation; Mesophilic; Culture conditions (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148113001778
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:59:y:2013:i:c:p:202-209

DOI: 10.1016/j.renene.2013.03.021

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:59:y:2013:i:c:p:202-209