Three-dimensional CFD analysis for simulating the greenhouse effect in solar chimney power plants using a two-band radiation model
Ehsan Gholamalizadeh and
Man-Hoe Kim
Renewable Energy, 2014, vol. 63, issue C, 498-506
Abstract:
The greenhouse effect in the solar collector has a fundamental role to produce the upward buoyancy force in solar chimney power plant systems. This study underlines the importance of the greenhouse effect on the buoyancy-driven flow and heat transfer characteristics through the system. For this purpose, a three-dimensional unsteady model with the RNG k–ε turbulence closure was developed, using computational fluid dynamics techniques. In this model, to solve the radiative transfer equation the discrete ordinates (DO) radiation model was implemented, using a two-band radiation model. To simulate radiation effects from the sun's rays, the solar ray tracing algorithm was coupled to the calculation via a source term in the energy equation. Simulations were carried out for a system with the geometry parameters of the Manzanares power plant. The effects of the solar insolation and pressure drop across the turbine on the flow and heat transfer of the system were considered. Based on the numerical results, temperature profile of the ground surface, thermal collector efficiency and power output were calculated and the results were validated by comparing with experimental data of this prototype power plant. Furthermore, enthalpy rise through the collector and energy loss from the chimney outlet between 1-band and two-band radiation model were compared. The analysis showed that simulating the greenhouse effect has an important role to accurately predict the characteristics of the flow and heat transfer in solar chimney power plant systems.
Keywords: Solar chimney power plant; Computational fluid dynamics; Greenhouse effect; Heat transfer modeling (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (29)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148113005417
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:63:y:2014:i:c:p:498-506
DOI: 10.1016/j.renene.2013.10.011
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().