EconPapers    
Economics at your fingertips  
 

Double layered plasmonic thin-film luminescent solar concentrators based on polycarbonate supports

S.M. El-Bashir, F.M. Barakat and M.S. AlSalhi

Renewable Energy, 2014, vol. 63, issue C, 642-649

Abstract: Plasmonic thin-film luminescent solar concentrators (PTLSCs) were prepared by coating polycarbonate substrates with fluorescent PMMA films doped with coumarin dyes, nanogold and nanosilver molecules. The study of the absorption and fluorescence spectra showed a highly efficient light harvesting accompanied with metal enhanced fluorescence (MEF) of PTLSC films. The photostability measurements showed a decrease of the dye photodegradation rates by increasing nanogold concentration. The indoor testing of PTLSCs showed that the enhancement of the output power conversion efficiency was 53.2%, 33.4% and 25.8% obtained for a-Si and mc-Si and c-Si PV cells respectively. The field performance of PTLSCs under diffused radiation was evaluated by outdoor testing in Riyadh city (KSA) during winter and spring seasons, the study revealed that the maximum solar electrical conversion is well correlated to the solar irradiance type at the location.

Keywords: Plasmonic luminescent solar concentrators; Nanogold; Photostability; Light harvesting; Power conversion efficiency; Silicon solar cells (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148113005442
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:63:y:2014:i:c:p:642-649

DOI: 10.1016/j.renene.2013.10.014

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:63:y:2014:i:c:p:642-649