EconPapers    
Economics at your fingertips  
 

Heat loss characteristics study of a trapezoidal cavity absorber with and without plate for a linear Fresnel reflector solar concentrator system

R. Manikumar and A. Valan Arasu

Renewable Energy, 2014, vol. 63, issue C, 98-108

Abstract: The numerical and experimental studies are conducted to analyze the heat loss in the cavity absorbers of linear Fresnel reflecting solar concentrator (LFRSC). The cavity is trapezoidal shape in cross section, which is placed at focus of the concentrator, has multiple tubes and water is used as the working fluid. The upper surface of the cavity has two models; with copper plate, above which absorber tubes are placed together and without copper plate i.e. absorber tubes alone without copper plate underneath. In both the models, the heat loss coefficient of projected absorber surfaces is analyzed with and without black chrome coating. For the numerical simulation of the trapezoidal cavity absorber, ANSYS FLUENT 12.0 version is used to develop the two dimensional model with non-Boussinesq numerical approximation. For the experimental study, two cavity absorbers are designed for operating in conjunction with a LFRSC experimental set up for the area of 4.0 m2. The overall heat loss coefficients are also estimated analytically by cavity correlations. The trend of variation of estimated heat loss coefficient by both methods is similar to experimental values. Also, estimated values by numerical study are very close to analytical and experimental values and the numerical model can be used for further analysis.

Keywords: LFRSC; Trapezoidal cavity absorber; Numerical analysis; CFD simulation (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148113004722
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:63:y:2014:i:c:p:98-108

DOI: 10.1016/j.renene.2013.09.005

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:63:y:2014:i:c:p:98-108