Electrical energy production from the integrated aerobic-anaerobic treatment of organic waste by ORC
Francesco Di Maria,
Caterina Micale and
Alessio Sordi
Renewable Energy, 2014, vol. 66, issue C, 461-467
Abstract:
The energetic performance of an ORC system fueled by the heat generated from the integrated aerobic/anaerobic treatment of organic waste was analyzed. The temperature and heat content of the exhaust air arising from the aerobic treatment were increased by the combustion of the biogas produced by the anaerobic digestion of a fraction of the same waste. On the basis of the amount of excess air exploited in the process, for each tonne of organic waste treated, it was possible to produce from 30 to 90 kg of exhaust air per day with a mean temperature ranging from 330 to 340 K. By processing from 0.5% to 16% of the whole organic waste in an anaerobic digestion section instead of the aerobic one, it was possible to increase the exhaust air temperature from 340 to 510 K, leading to an increase in the ORC size from about 0.05 to about 1 W/tonne/year. The best energetic utilization of the biogas was achieved for ORC compression ratios from 1.5 to 2 and for maximum air temperatures from 335 to 340 K. In these conditions, by using a micro-ORC system (i.e. <15 kW), it was possible to convert about 20% of the energy content of the biogas into electrical energy.
Keywords: Aerobic treatment; Anaerobic digestion; Electrical energy; Organic Rankine cycle; Organic waste; Figure of merit (search for similar items in EconPapers)
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148114000160
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:66:y:2014:i:c:p:461-467
DOI: 10.1016/j.renene.2013.12.045
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).