Computational and experimental analysis of a commercially available Seebeck module
D.N. Kossyvakis,
C.G. Vossou,
C.G. Provatidis and
E.V. Hristoforou
Renewable Energy, 2015, vol. 74, issue C, 1-10
Abstract:
During the last decade thermoelectrics have emerged as a promising alternative amongst other green power production technologies due to the unique advantages they present. In this respect, performance prediction of thermoelectric devices is critical both for evaluating the potential application of new materials and defining the crucial design parameters of thermoelectric generators and systems. This paper investigates, computationally as well as experimentally, the performance of a commercially available Seebeck module under steady-state operating conditions. Computational results, retrieved using ANSYS Workbench (v. 14.0), were compared to performance data available by the manufacturer. Additionally to that, in order to further verify the integrity of the modelling procedure, experimental evaluation using the same commercial module was conducted in laboratory environment. Although a relatively large deviation between computational and manufacturer data was observed when the mean operating temperature of the generator was taken into account, a very good agreement was established in terms of generator efficiency, providing also a rational explanation to the resulting divergence of the first case. Furthermore, the outcomes of the experimental analysis validated the accuracy of the finite element modelling process.
Keywords: Thermoelectric power generation; Seebeck module; Waste-heat recovery; Thermal-electric finite element analysis (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148114004108
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:74:y:2015:i:c:p:1-10
DOI: 10.1016/j.renene.2014.07.024
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().