Electrochemical conversion of enriched crude glycerol: Effect of operating parameters
Mali Hunsom and
Payia Saila
Renewable Energy, 2015, vol. 74, issue C, 227-236
Abstract:
The enrichment of crude glycerol (29.8 wt.%) from a biodiesel production plant and its subsequent electrochemical conversion under a galvanostatic mode to added-value compounds was successfully performed at a laboratory scale. The optimal solvent-extraction based enrichment of the crude glycerol, after the acid pre-treatment to remove most free fatty acids and salts, was found using n-propanol:pre-treated crude glycerol at volume ratio of 2, attaining 97.9% glycerol. The effects of the initial glycerol solution pH (1, 7 or 11), type of electrode (platinum (Pt), titanium-coated ruthenium oxide (Ti/RuO2) or stainless steel (SS)) and applied current density (0.08–0.27 A/cm2) were explored. Using a galvanostatic mode, the enriched crude glycerol could be converted to added-value products, such as ethylene glycol, acetol, glycidol, acrolein, 1,2-propanediol (PD) and 1,3-PD. A Pt electrode, initial glycerol solution pH of 1 and current density of 0.14 A/cm2 were found to be optimal giving a complete conversion of 0.3 M glycerol within 14 h with a total product yield of 68.7%. However, each specific product had a different optimal applied current density and electrolysis time. Finally, a simplified diagram showing the possible major reaction pathways of glycerol conversion by this electrochemical conversion over a Pt electrode was presented.
Keywords: Crude glycerol; Solvent extraction; Added-value compound; Electrochemical conversion (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148114004662
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:74:y:2015:i:c:p:227-236
DOI: 10.1016/j.renene.2014.08.008
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().