Performance evaluation and parametric optimum design of a syngas molten carbonate fuel cell and gas turbine hybrid system
Xiuqin Zhang,
Huiying Liu,
Meng Ni and
Jincan Chen
Renewable Energy, 2015, vol. 80, issue C, 407-414
Abstract:
A novel model of the molten carbonate fuel cell (MCFC) and gas turbine (GT) hybrid system with direct internal reforming is established, where the fuel cell and the auxiliary burner are taken as the heat reservoirs of the GT. Expressions for the power output and efficiency of the hybrid system are derived by considering various irreversible losses resulting from the overpotentials in the MCFC, the heat leakage in the auxiliary burner, and the finite-rate heat transfer and compression, expansion, and regeneration processes in the GT. The effects of some key parameters including the molar fraction of the oxygen in the oxidant, the utilization factor of the hydrogen in the MCFC on the performance of the hybrid system are revealed. It is found that the efficiency of the hybrid system will be increased by adding the utilization factor of the hydrogen, and the maximum power output of the hybrid system will be achieved when the utilization factor of the hydrogen is equal to 0.78. Moreover, the flowing rates of the syngas and oxidant and the molar fraction of the oxygen in the oxidant are determined under the optimal efficiency or maximum power output of the hybrid system.
Keywords: Molten carbonate fuel cell; Gas turbine; Internal fuel reforming; Performance characteristic analysis; Optimization criteria (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115001354
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:80:y:2015:i:c:p:407-414
DOI: 10.1016/j.renene.2015.02.035
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().