Suggested solution concentration for an energy-efficient refrigeration system combined with condensation heat-driven liquid desiccant cycle
Xiaohui She,
Yonggao Yin and
Xiaosong Zhang
Renewable Energy, 2015, vol. 83, issue C, 553-564
Abstract:
This paper presents a hybrid energy-efficient refrigeration system enhanced by liquid desiccant evaporative cooling technology for subcooling the refrigerant, where the liquid desiccant cycle is driven by the exhausted heat from the condenser and three commonly used liquid desiccants: LiCl, LiBr and CaCl2 aqueous solutions are considered here. The solution concentration for the proposed hybrid energy-efficient refrigeration system should be determined and optimized carefully for better performance. Sensitive study of solution concentration involved in the hybrid system is conducted at different condensation temperature. The results indicates that under standard working condition (i.e., condensing temperature is 50 °C), the optimum solution concentration is 0.31 for LiCl aqueous solution, 0.45 for LiBr aqueous solution and 0.42 for CaCl2 aqueous solution, while the maximum COPs are nearly same. When the condensing temperature is 45 °C, the optimum solution concentration should be set at 0.27 for LiCl aqueous solution, and 0.41 for LiBr aqueous solution and 0.37 for CaCl2 aqueous solution, while condensing temperature is 55 °C, it is 0.35 for LiCl aqueous solution, 0.49 for LiBr aqueous solution and 0.45 for CaCl2 aqueous solution. The simple fitting formulas are obtained, and performance improvement potential is discussed.
Keywords: Refrigeration; Liquid desiccant; Exhausted heat utilization; Solution concentration; Performance improvement (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811500364X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:83:y:2015:i:c:p:553-564
DOI: 10.1016/j.renene.2015.05.003
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().