EconPapers    
Economics at your fingertips  
 

Effect of disturbance on thermal response test, part 1: Development of disturbance analytical model, parametric study, and sensitivity analysis

Wonjun Choi and Ryozo Ooka

Renewable Energy, 2016, vol. 85, issue C, 306-318

Abstract: To interpret thermal response tests (TRTs), analytical models that assume constant heat flux from the source are widely used because of their simplicity. However, in actual field conditions, the constant heat flux assumption is violated by the heat exchange between the above-ground TRT setup and outdoor environment. This results in perturbations in the temperature response and causes fluctuations in estimation and consequent estimation errors in the interpretation of TRTs. For a better design of experiments and obtaining quality data from a TRT, a systematic analysis of the disturbance factors is important. In this study, we developed an analytical model that describes the heat exchange in an above-ground TRT setup. On the basis of this model, a parametric study and sensitivity analysis were conducted in a systematic manner using disturbance-related parameters, such as test settings (heat injection rate and flow rate), above-ground connecting circuit parameters (insulation thickness, length, and radiation absorptivity), temperature of fluid, and weather conditions (solar irradiation, environmental temperature, and wind velocity). The above-ground circuit length and parameters related to radiative heat transfer showed the highest sensitivity coefficients. Based on the results, some suggestions are provided for experimenters on designing TRT setups and conducting TRTs to obtain quality data.

Keywords: Ground-source heat pump (GSHP); Thermal response test (TRT); Experimental disturbance; Parametric study; Sensitivity analysis (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115300653
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:85:y:2016:i:c:p:306-318

DOI: 10.1016/j.renene.2015.06.042

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:85:y:2016:i:c:p:306-318