EconPapers    
Economics at your fingertips  
 

Mechanical response evaluation of microcapsules from different slurries

Jessica Giro-Paloma, Camila Barreneche, Mònica Martínez, Boštjan Šumiga, Ana Inés Fernández and Luisa F. Cabeza

Renewable Energy, 2016, vol. 85, issue C, 732-739

Abstract: Thermal energy storage (TES) is one method to accumulate thermal energy. In TES, latent heat storage using phase change materials (PCM) has attracted a lot of interest, recently. Phase change slurries (PCS) consist on a carrier fluid binary system composed of water as the continuous phase and microencapsulated PCM as the dispersed phase. In this paper, two PCS to be used for TES in buildings were studied: Micronal® DS 5007 X, from BASF company, and PCS28, a laboratory made sample. Both samples were characterized using particle size distribution and scanning electron microscopy, to observe the regular spherical microcapsules, the surface morphology, and the wall shell thickness of the microcapsules. Atomic force microscopy was used to analyze the force needed to break the PCS microcapsules, a critical parameter when the PCS are to be used in active pumpable systems, and also to evaluate the effective Young's modulus. Both samples were studied with the microcapsules broken and unbroken. The physicochemical and thermal properties were reported in a previous paper, and it can be concluded that both are proper candidates to be used in TES building heating and cooling applications, but the acrylic shell microcapsules present better breakage resistance to be used in active systems.

Keywords: Phase change slurry (PCS); Particle size distribution (PSD); Scanning electron microscopy (SEM); Atomic force microscope (AFM); Mechanical characterization (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115301282
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:85:y:2016:i:c:p:732-739

DOI: 10.1016/j.renene.2015.07.033

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:85:y:2016:i:c:p:732-739