EconPapers    
Economics at your fingertips  
 

Effect of blade vortex interaction on performance of Darrieus-type cross flow marine current turbine

Y. Wang, X.J. Sun, B. Zhu, H.J. Zhang and D.G. Huang

Renewable Energy, 2016, vol. 86, issue C, 316-323

Abstract: In this work, in-house computational fluid dynamics (CFD) code was utilized to simulate a cross-flow vertical-axis marine current turbine (straight-bladed Darrieus type). Particular emphasis was placed on the influence of interaction between vortices and blades on hydrodynamic performance. A physical transient-rotor–stator model with a sliding mesh technique was used to capture changes in flow field at a particular time step. The Spalart–Allmaras turbulence model was adopted for the turbulence. For a Darrieus-type marine current turbine, hydrodynamic characteristics such as power coefficient and flow behavior were then numerically investigated. The results suggest that vortices shed from previous blade passages and the close encounter of a rotor blade with these vortices can cause a variation in performance for this type of turbine during operation at different tip speed ratios.

Keywords: Darrieus-type marine current turbine; Hydrodynamic performance; Blade-vortex interaction; Numerical simulation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115301853
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:86:y:2016:i:c:p:316-323

DOI: 10.1016/j.renene.2015.07.089

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:86:y:2016:i:c:p:316-323