Low carbon technology assessment and planning—Case analysis of building sector in Chongming, Shanghai
Beijia Huang and
Volker Mauerhofer
Renewable Energy, 2016, vol. 86, issue C, 324-331
Abstract:
This paper aims to comparatively analyze the carbon reduction potential of several low carbon technologies by means of different assessment and planning methods for regional development. Seven commonly used building energy saving technologies are evaluated and the priority-setting among them is identified on the example of the building sector in Chongming Island, Shanghai. By applying Decoupling Theory, the CO2 emission reduction extent under a low carbon scenario and an ideal scenario are estimated for 2030. The required application areas for different technology schemes are calculated using the Technology Combination Planning Method. In order to further find out required application areas for each technology under the least costs, the Goal Programming Method is then applied. Findings of the Technology Combination Planning Method reveal that the combination of energy saving technologies with high GHG emission reduction such as building insulation and geothermal heat pump have obvious effect in helping reducing the required technology application area. Goal Programming provides results for the required application area of each technology, and the minimum emission reduction cost is found as 2.54 × 108 US dollar under low carbon scenario and 3.50 × 108 US dollar under ideal scenario.
Keywords: Low carbon technology; Sustainability; Assessment; Planning (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115302147
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:86:y:2016:i:c:p:324-331
DOI: 10.1016/j.renene.2015.08.014
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().