Steady-state investigation of water vapor adsorption for thermally driven adsorption based greenhouse air-conditioning system
Muhammad Sultan,
Takahiko Miyazaki,
Bidyut Baran Saha and
Shigeru Koyama
Renewable Energy, 2016, vol. 86, issue C, 785-795
Abstract:
In the present study, water vapor adsorption onto silica-gel, activated carbon powder (ACP) and activated carbon fiber (ACF) has been experimentally measured at 20, 30 and 50 °C using a volumetric method based adsorption measurement apparatus for greenhouse air-conditioning (AC). The Guggenheim–Anderson–De Boer and Dubinin–Astakhov adsorption models are used to fit the adsorption data of silica-gel and ACP/ACF, respectively. The isosteric heat of adsorption is determined by Clausius–Clapeyron relationship. The adsorbents are evaluated for low-temperature regeneration with aim to develop solar operated AC system for greenhouses. Ideal growth zone for agricultural products is determined by which the steady-state desiccant AC cycle is evaluated on the psychometric chart and adsorption isobars.
Keywords: Adsorption; Air-conditioning; Greenhouse; Carbon; Steady-state; Vapor pressure deficit (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115302949
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:86:y:2016:i:c:p:785-795
DOI: 10.1016/j.renene.2015.09.015
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().