Experimental study on the role of ethanol on performance emission trade-off and tribological characteristics of a CI engine
Udayan Majumder,
Prasun Chakraborti,
Rahul Banerjee and
Bishop Debbarma
Renewable Energy, 2016, vol. 86, issue C, 972-984
Abstract:
An experimental study of engine combustion, performance and emission characteristics using diesel–ethanol blends along with investigation of tribological effects of ethanol on engine oil was done in present work using 1-butanol as emulsifier. Thorough observations of diesel–ethanol miscibility resulted that 25% v/v ethanol is miscible with diesel using only 3% v/v emulsifier. Tribological effects of ethanol on engine oil were investigated by analyzing the engine oil samples through FT-IR (Fourier Transform Infrared Spectroscopy). Overall experimentation re-evaluated the potential of ethanol in reduction of NOx, Soot and in-cylinder temperature with slight penalty for HC, CO and BSEC prominently at low load. All fuels produced more NO but lesser NO2 at higher load satisfying Zeldovich mechanism. A comparative trade-off analysis was done in between NHC, Soot and BSEC to reflect the performance and emission characteristics at a time. Trade-off study revealed D78E20B02 (78% diesel 20% ethanol 2% butanol) as optimal blend among all fuels used in present work. FT-IR analysis depicted negligible variation in the compounds in engine oil samples for the specified operational period. Statistical analysis showed larger Coefficient of variation for D78E20B02 blend due to higher absorbance of a particular compound.
Keywords: Diesel-ethanol blends; Trade-off study; FT-IR; Tribological characteristics (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811530286X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:86:y:2016:i:c:p:972-984
DOI: 10.1016/j.renene.2015.09.007
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().