EconPapers    
Economics at your fingertips  
 

Influence of self-weight on electrical power conversion of dense-array concentrator photovoltaic system

Ming-Hui Tan and Kok-Keong Chong

Renewable Energy, 2016, vol. 87, issue P1, 445-457

Abstract: New methodology of analyzing the influence of self-weight structural deflection towards the power conversion loss of dense-array concentrator photovoltaic (CPV) system has been formulated. As a case study, a three-dimensional mechanical model has been created based on the 23-m2 non-imaging dish concentrator (NIDC) prototype in which self-weight mechanical deflection and the consequent effect to the optical performance have been carried out at various elevation angles to determine the solar flux distributions. Finally, the overall power conversion of dense-array solar cells by taking into account of solar flux distribution has been simulated. For elevation angle of 60°, the energy variation and solar concentration ratio variation of solar flux distribution are 3.2% and 43% respectively as compared to ideal circumstance without self-weight deflection. The resulted maximum power conversion loss is 12.4%. The influence of self-weight on NIDC has significant impact to both the image distortion and pointing error of the solar flux distribution, which is one of major reasons to deteriorate the electrical power conversion of the CPV system.

Keywords: Strain gauge; Non-imaging dish concentrator; Optical alignment; Concentrator photovoltaic; Mechanical deflection; Solar flux distribution (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811530375X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:87:y:2016:i:p1:p:445-457

DOI: 10.1016/j.renene.2015.10.022

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:87:y:2016:i:p1:p:445-457