EconPapers    
Economics at your fingertips  
 

A study on dynamic heating in solar dish concentrators

L.A. Andrade, M.A.S. Barrozo and L.G.M. Vieira

Renewable Energy, 2016, vol. 87, issue P1, 501-508

Abstract: In recent years there has been a growing interest in renewable energy sources due to the increasing prices and the possible exhaustion of the current commercial energy reserves. The use of sunlight as an energy source offers a huge number of long-term benefits in widely varied and flexible applications. In the present work, the behavior of the temporal temperature in a specimen placed on the focal point of a parabolic dish solar concentrator was predicted, and a dimension quantity (Ω) was proposed. This parameter (Ω) correlates the diameter of the solar collector (D) with the solid mass to be heated (M) and the rate of solar irradiance (G). The behavior of the Equilibrium Temperature as a function of Ω was also investigated. Simulations were carried out by manipulating D, M and G, and they were arranged according to a full factorial design. The simulation results obtained showed that temperatures up to 1,600 °C can be achieved in relatively short periods of time, and they also indicated that the solar concentrator studied in this work can be an alternative to provide thermal energy for high temperature applications.

Keywords: Solar energy; Solar dish concentrators; Theoretical model (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115304080
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:87:y:2016:i:p1:p:501-508

DOI: 10.1016/j.renene.2015.10.055

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:87:y:2016:i:p1:p:501-508