Wind farm layout optimization using area dimensions and definite point selection techniques
Rabia Shakoor,
Mohammad Yusri Hassan,
Abdur Raheem and
Nadia Rasheed
Renewable Energy, 2016, vol. 88, issue C, 154-163
Abstract:
Wind turbines are the biggest rotating machines on earth, operating in the lowest part of the earth boundary layer. Designing the layout scheme of wind farms is a challenging job to researchers, as there are many design objectives and constraints due to the multiple wake phenomena. This paper proposes an area rotation method to find the optimum dimensions of the wind farm shape, where maximum area could face the free stream velocity. Afterwards, a novel method called Definite Point Selection (DPS) is developed to place the turbines in order to operate at maximum, while providing obligatory space between adjacent turbines for operation safety. This method can be used to identify the zero wake effect points at wind farm. The result from this study shows that the proposed method is more effective to increase the overall power of a wind farm than the previous methods. Also, the power output of the wind farm by using combined area rotation and DPS methods was increased even when using the same number of wind turbines.
Keywords: Wind farm; Wake effect; Jensen's wake model; Layout optimization (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115304390
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:88:y:2016:i:c:p:154-163
DOI: 10.1016/j.renene.2015.11.021
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().