A particle swarm optimization based power dispatch algorithm with roulette wheel re-distribution mechanism for equality constraint
Yu-Shan Cheng,
Man-Tsai Chuang,
Yi-Hua Liu,
Shun-Chung Wang and
Zong-Zhen Yang
Renewable Energy, 2016, vol. 88, issue C, 58-72
Abstract:
In this paper, a particle swarm optimization (PSO)-based power dispatch algorithm is proposed to deal with the energy management problem of the hybrid generation system (HGS). For conventional PSO method, the search space is only defined by inequality constraints. However, as for power dispatch problems, it is vital to maintain power balance, which can be represented as an equality constraint. To address this issue, a roulette wheel re-distribution mechanism is proposed. With this re-distribution mechanism, unbalanced power can be reallocated to more superior element and the searching diversity can be preserved. In addition, the effect of depth of discharge on the life cycle of the battery bank is also taken into account by developing a penalty mechanism. The proposed method is then applied to a HGS consisting of photovoltaic array, wind turbine, microturbine, battery banks, utility grid and residential load. To validate the effectiveness and correctness of the proposed method, simulation results for a whole day will also be provided. Comparing with three other power dispatching methods, the proposed method can achieve the lowest accumulated cost.
Keywords: Hybrid generation system; Energy management; Power dispatch; Particle swarm optimization; Roulette wheel method (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115304419
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:88:y:2016:i:c:p:58-72
DOI: 10.1016/j.renene.2015.11.023
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().