Informed mutation of wind farm layouts to maximise energy harvest
Michael Mayo and
Maisa Daoud
Renewable Energy, 2016, vol. 89, issue C, 437-448
Abstract:
Correct placement of turbines in a wind farm is a critical issue in wind farm design optimisation. While traditional “trial and error”-based approaches suffice for small layouts, automated approaches are required for larger wind farms with turbines numbering in the hundreds. In this paper we propose an evolutionary strategy with a novel mutation operator for identifying wind farm layouts that minimise expected velocity deficit due to wake effects. The mutation operator is based on constructing a predictive model of velocity deficits across a layout so that mutations are inherently biased towards better layouts. This makes the operator informed rather than randomised. We perform a comprehensive evaluation of our approach on five challenging simulated scenarios using a simulation approach acceptable to industry [1]. We then compare our algorithm against two baseline approaches including the Turbine Displacement Algorithm [2]. Our results indicate that our informed mutation approach works effectively, with our approach identifying layouts with the lowest aggregate velocity deficits on all five test scenarios.
Keywords: Wind farm; Layout optimisation; Velocity deficit; Wake effect; Evolutionary strategy; Informed mutation operator; Turbine displacement algorithm (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115305115
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:89:y:2016:i:c:p:437-448
DOI: 10.1016/j.renene.2015.12.006
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().