Generator bearing fault diagnosis for wind turbine via empirical wavelet transform using measured vibration signals
Jinglong Chen,
Jun Pan,
Zipeng Li,
Yanyang Zi and
Xuefeng Chen
Renewable Energy, 2016, vol. 89, issue C, 80-92
Abstract:
The implementation of condition monitoring and fault diagnosis system (CMFDS) on wind turbine is significant to lower the unscheduled breakdown. Generator is one of the most important components in wind turbine, and generator bearing fault identification always draws lots of attention. However, non-stationary vibration signal of weak fault and compound fault with a large amount of background noise makes this task challenging in many cases. So, effective signal processing method is essential in the accurate diagnosis step of CMFDS. As a novel signal processing method, empirical Wavelet Transform (EWT) is used to extract inherent modulation information by decomposing signal into mono-components under an orthogonal basis, which is seen as a powerful tool for mechanical fault diagnosis. Moreover, in order to avoid the inaccurate identification the internal modes caused by the heavy noise, wavelet spatial neighboring coefficient denoising with data-driven threshold is applied to increase Signal to Noise Ratio (SNR) before EWT. The effectiveness of the proposed technique on weak fault and compound fault diagnosis is first validated by two experimental cases. Finally, the proposed method has been applied to identify fault feature of generator bearing on wind turbine in wind farm successfully.
Keywords: Wind turbine; Generator bearing; Weak fault and compound fault diagnosis; Empirical wavelet transform; Spatial neighboring coefficient (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (28)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115305140
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:89:y:2016:i:c:p:80-92
DOI: 10.1016/j.renene.2015.12.010
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().