Modeling of hydrogen alkaline membrane fuel cell with interfacial effect and water management optimization
Hao Deng,
Dawei Wang,
Xu Xie,
Yibo Zhou,
Yan Yin,
Qing Du and
Kui Jiao
Renewable Energy, 2016, vol. 91, issue C, 166-177
Abstract:
In this study, a whole-cell 3D multiphase non-isothermal model is developed for hydrogen alkaline anion exchange membrane (AAEM) fuel cell, and the interfacial effect on the two-phase transport in porous electrode is also considered in the model. The results show that the insertion of anode MPL, slight anode pressurization and reduction of membrane thickness generally improve the cell performance because the water transport from anode to cathode is enhanced, which favors both the mass transport and membrane hydration. The effect of cathode MPL is generally insignificant because liquid water rarely presents in cathode. It is demonstrated that slight pressurization of anode, which might not lead to apparent damage to the membrane, can effectively solve the anode flooding and cathode dryout issues.
Keywords: Alkaline anion exchange membrane; Micro porous layer; Back pressure; Membrane thickness; Interfacial effect (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116300544
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:91:y:2016:i:c:p:166-177
DOI: 10.1016/j.renene.2016.01.054
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().