Biomass to hydrogen-rich syngas via catalytic steam reforming of bio-oil
Guanyi Chen,
Jingang Yao,
Jing Liu,
Beibei Yan and
Rui Shan
Renewable Energy, 2016, vol. 91, issue C, 315-322
Abstract:
Hydrogen-rich syngas production from the catalytic steam reforming of bio-oil from fast pyrolysis of pinewood sawdust was investigated by using La1−xKxMnO3 perovskite-type catalysts. The effects of the K substitution, temperature, water to carbon molar ratio (WCMR) and bio-oil weight hourly space velocity (WbHSV) on H2 yield, carbon conversion and the product distribution were studied in a fixed-bed reactor. The results showed that La1−xKxMnO3 perovskite-type catalysts with a K substitution of 0.2 gave the best performance and had a higher catalytic activity than the commercial Ni/ZrO2. Both high temperature and low WbHSV led to higher H2 yield. However, excessive steam reduced hydrogen yield. For the La0.8K0.2MnO3 catalyst, a hydrogen yield of 72.5% was obtained under the optimum operating condition (T = 800 °C, WCMR = 3 and WbHSV = 12 h−1). The deactivation of the catalysts mainly was caused by coke deposition.
Keywords: Hydrogen; Biomass; Bio-oil; Perovskite-type oxide; Catalytic steam reforming (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116300738
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:91:y:2016:i:c:p:315-322
DOI: 10.1016/j.renene.2016.01.073
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().