EconPapers    
Economics at your fingertips  
 

Analysing RMS and peak values of vibration signals for condition monitoring of wind turbine gearboxes

Joel Igba, Kazem Alemzadeh, Christopher Durugbo and Egill Thor Eiriksson

Renewable Energy, 2016, vol. 91, issue C, 90-106

Abstract: Wind turbines (WTs) are designed to operate under extreme environmental conditions. This means that extreme and varying loads experienced by WT components need to be accounted for as well as gaining access to wind farms (WFs) at different times of the year. Condition monitoring (CM) is used by WF owners to assess WT health by detecting gearbox failures and planning for operations and maintenance (O&M). However, there are several challenges and limitations with commercially available CM technologies – ranging from the cost of installing monitoring systems to the ability to detect faults accurately. This study seeks to address some of these challenges by developing novel techniques for fault detection using the RMS and Extreme (peak) values of vibration signals. The proposed techniques are based on three models (signal correlation, extreme vibration, and RMS intensity) and have been validated with a time domain data driven approach using CM data of operational WTs. The findings of this study show that monitoring RMS and Extreme values serves as a leading indicator for early detection of faults using Extreme value theory, giving WF owners time to schedule O&M. Furthermore, it also indicates that the prediction accuracy of each CM technique depends on the physics of failure. This suggests that an approach which incorporates the strengths of multiple techniques is needed for holistic health assessment of WT components.

Keywords: Condition monitoring; Gearboxes; RMS vibrations; Extreme value theory; Condition-based maintenance (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116300064
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:91:y:2016:i:c:p:90-106

DOI: 10.1016/j.renene.2016.01.006

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:91:y:2016:i:c:p:90-106