EconPapers    
Economics at your fingertips  
 

Computational fluid dynamic analysis of innovative design of solar-biomass hybrid dryer: An experimental validation

Sonthawi Sonthikun, Phaochinnawat Chairat, Kitti Fardsin, Pairoj Kirirat, Anil Kumar and Perapong Tekasakul

Renewable Energy, 2016, vol. 92, issue C, 185-191

Abstract: A solar-biomass hybrid dryer is designed and constructed for natural rubber sheet drying. The dryer consists of solar collector cum drying chamber, heat exchanger and biomass furnace. There is indirect heating of rubber sheet instead of direct exposure to smoke in ribbed smoked rubber drying. An attempt has been done to reduce consumption of biomass by introducing solar energy application. Computational fluid dynamics technique is used to simulate the temperature and air flow distributions in an innovative design of drying chamber. The simulation results for temperature are found very close to experimental values in terms of statistical parameters. CFD simulation is done for air flow distribution inside solar-biomass hybrid dryer to ensure the utility of air circulating fans. The solar-biomass hybrid dryer is tested for drying of 100 number of natural rubber sheets. Moisture content of rubber sheet is reduced from 34.26% to 0.34% (db) in only 48 h, a notable reduction in drying time as well as consumption of biomass. The color and texture of the natural rubber sheet were noticed better than the traditional smoke rubber drying.

Keywords: Computational fluid dynamics; Natural rubber sheet; Drying chamber; Solar-biomass hybrid dryer; Temperature and air flow distribution (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116300957
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:92:y:2016:i:c:p:185-191

DOI: 10.1016/j.renene.2016.01.095

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:92:y:2016:i:c:p:185-191