Adapted two-equation turbulence closures for actuator disk RANS simulations of wind & tidal turbine wakes
Michael Shives and
Curran Crawford
Renewable Energy, 2016, vol. 92, issue C, 273-292
Abstract:
Reliable methods for modelling wake recovery within a farm of wind or tidal turbines are critical for obtaining accurate estimates of annual energy production, and for detailed farm layout optimization. These are important objectives for maximizing energy yield while minimizing costs. Computational fluid dynamics (CFD) simulation is rapidly being adopted as a tool for flow modelling in wind and tidal farms, gaining favour over more traditional and simpler empirically-determined wake models. The most practical methodology for CFD simulations of turbine farms uses an actuator disk (AD) representation for each rotor, which imposes the rotor forces by adding source terms to the governing equations rather than explicitly resolving the flow over the turbine blades. It is well understood that when using the AD approach, standard turbulence models tend to predict faster wake recovery than is observed in real flows. Thus, the standard CFD turbulence models must be adapted for use with the AD methodology. Additionally, because of the manner in which the AD approach distributes the rotor forces, it cannot resolve the system of discrete vortices trailed from the blade tips.
Keywords: Actuator disk; Wind; Tidal; Turbine; Turbulence; RANS (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116301276
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:92:y:2016:i:c:p:273-292
DOI: 10.1016/j.renene.2016.02.026
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().