Determination of local values of heat transfer coefficient in geothermal models with internal functions method
Piotr Kędzierski,
Zdzisław Nagórski and
Tadeusz Niezgoda
Renewable Energy, 2016, vol. 92, issue C, 506-516
Abstract:
The objective of this study is to determine the depth characteristic of a heat transfer coefficient in the wellbore heat exchanger with the use of the original calculation procedure called an internal functions method. During the geothermal heat recovery, the substances change their pressure and temperature together with current (local) depth of the wellbore. Together with a change of these thermophysical parameters, there are also changes in the substance thermophysical properties, i.e.: specific heat, heat conductivity, density and viscosity. These properties decide on Prandtl Pr and Reynolds Re criterion numbers. These numbers, in connection with Nusselt number, enable to determine the local values of the heat transfer coefficient. The values of thermophysical properties and a heat transfer coefficient, assumed in the calculation models of the geothermal heat recovery, usually have a decisive influence on the reliability of the obtained results.
Keywords: Geothermal energy; Heat transfer coefficient; Wellbore heat exchanger; Abandoned oil wells (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116301434
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:92:y:2016:i:c:p:506-516
DOI: 10.1016/j.renene.2016.02.042
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().