Effects of urban compactness on solar energy potential
Nahid Mohajeri,
Govinda Upadhyay,
Agust Gudmundsson,
Dan Assouline,
Jérôme Kämpf and
Jean-Louis Scartezzini
Renewable Energy, 2016, vol. 93, issue C, 469-482
Abstract:
Compactness is a major urban form parameter that affects the accessibility of solar energy in the built environment. Here we explore the relation between various compactness indicators and solar potential in the 16 neighbourhoods (11,418 buildings) constituting the city of Geneva (Switzerland). The solar potential is assessed for building integrated photovoltaics (BiPV), solar thermal collectors (STC), and direct gain passive solar systems. The hourly solar irradiation on each of the building surfaces over one year period is calculated using CitySim simulations, while taking the effects of irradiation threshold for roof and facades into account. With increasing compactness, the annual solar irradiation decreases from 816 to 591 kWh m−2. When passing from dispersed to compact neighbourhoods, the BiPV potential (given as percentage of total area) for facades decreases from 20% to 3%, the STC potential from 85% to 49%, and the passive solar heating potential from 21% to 4%, whereas for roofs the BiPV potential decreases from 94% to 79% and the STC potential from 100% to 95%. The solar potential for roofs, therefore, is much less affected than that for facades by the compactness. The results should be of great help for urban-form energy optimisation and building retrofitting interventions.
Keywords: Urban density; Renewable energy; Entropy; Sustainability; Photovoltaics; Solar thermal collectors (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (42)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116301549
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:93:y:2016:i:c:p:469-482
DOI: 10.1016/j.renene.2016.02.053
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().