EconPapers    
Economics at your fingertips  
 

Effect of nozzle and combustion chamber geometry on the performance of a diesel engine operated on dual fuel mode using renewable fuels

V.S. Yaliwal, N.R. Banapurmath, N.M. Gireesh, R.S. Hosmath, Teresa Donateo and P.G. Tewari

Renewable Energy, 2016, vol. 93, issue C, 483-501

Abstract: Renewable and alternative fuels have numerous advantages compared to fossil fuels as they are biodegradable, providing energy security and foreign exchange saving and addressing environmental concerns, and socio-economic issues as well. Therefore renewable fuels can be predominantly used as fuel for transportation and power generation applications. In view of this background, effect of nozzle and combustion chamber geometry on the performance, combustion and emission characteristics have been investigated in a single cylinder, four stroke water cooled direct injection (DI) compression ignition (CI) engine operated on dual fuel mode using Honge methyl ester (HOME) and producer gas induction. In the present experimental investigation, an effort has been made to enhance the performance of a dual fuel engine utilizing different nozzle orifice and combustion chamber configurations. In the first phase of the work, injector nozzle (3, 4 and 5 hole injector nozzle, each having 0.2, 0.25 and 0.3 mm hole diameter and injection pressure (varied from 210 to 240 bar in steps of 10 bar) was optimized. Subsequently in the next phase of the work, combustion chamber for optimum performance was investigated. In order to match proper combustion chamber for optimum nozzle geometry, two types of combustion chambers such as hemispherical and re-entrant configurations were used. Re-entrant type combustion chamber and 230 bar injection pressure, 4 hole and 0.25 mm nozzle orifice have shown maximum performance. Results of investigation on HOME-producer gas operation showed 4–5% increased brake thermal efficiency with reduced emission levels. However, more research and development of technology should be devoted to this field to further enhance the performance and feasibility of these fuels for dual fuel operation and future exploitations.

Keywords: Producer gas; Dual-fuel engine; Gasifier-engine system; Combustion chamber; Performance; Combustion and emissions (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811630204X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:93:y:2016:i:c:p:483-501

DOI: 10.1016/j.renene.2016.03.020

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:93:y:2016:i:c:p:483-501