Multi-objective optimization for GPU3 Stirling engine by combining multi-objective algorithms
Zhongyang Luo,
Umair Sultan,
Mingjiang Ni,
Hao Peng,
Bingwei Shi and
Gang Xiao
Renewable Energy, 2016, vol. 94, issue C, 114-125
Abstract:
Stirling engine has become preferable for high attention towards the use of alternate renewable energy resources like biomass and solar energy. Stirling engine is the main component of dish Stirling system in thermal power generation sector. Stirling engine is an externally heating engine, which theoretical efficiency is as high as Carnot cycle's, but actual ones are always far below compared with the Carnot efficiency. A number of studies have been done on multi-objective optimization to improve the design of Stirling engine. In the current study, a multi-objective optimization method, which is a combination of multiple optimization algorithms including differential evolution, genetic algorithm and adaptive simulated annealing, was proposed. This method is an attempt to generalize and improve the robustness and diversity with above three kinds of population based meta-heuristic optimization techniques. The analogous interpreter was linked and interchanged to find the best global optimal solution for Stirling engine performance optimization. It decreases the chance of convergence at a local minimum by powering from the fact that these three algorithms run parallel and members from each population and technique are swapped. The optimization considers five decision variables, including engine frequency, mean effective pressure, temperature of heating source, number of wires in regenerator matrix, and the wire diameter of regenerator, as multiple objectives. The Pareto optimal frontier was obtained and a final optimal solution was also selected by using various multi-criteria decision making methods including techniques for Order of Preference by Similarity to Ideal Solution and Simple Additive Weighting. The multi-objective optimization indicated a way for GPU-3 Stirling engine to obtain an output power of more than 3 kW and an increase by 5% in thermal efficiency with significant decrease in power loss due to flow resistance.
Keywords: Stirling engine; Optimization; Differential evolution; Genetic algorithm; Adaptive simulated annealing (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116301926
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:94:y:2016:i:c:p:114-125
DOI: 10.1016/j.renene.2016.03.008
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().