EconPapers    
Economics at your fingertips  
 

Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube

E. Bellos, C. Tzivanidis, K.A. Antonopoulos and G. Gkinis

Renewable Energy, 2016, vol. 94, issue C, 213-222

Abstract: Parabolic trough collectors are the most mature technology for utilizing the solar energy in high temperature applications. The objective of this study is the thermal efficiency enhancement of the commercial parabolic collector IST-PTC by increasing the convective heat transfer coefficient between the working fluid and the absorber. There are two main factors which influence on this parameter, the working fluid type and the absorber geometry. For this reason three working fluids are investigated, thermal oil, thermal oil with nanoparticles and pressurized water. Moreover, a dimpled absorber tube with sine geometry is tested because this shape increases the heat transfer surface and increases the turbulence in the flow. The final results show that these two techniques improve the heat transfer coefficient and the thermal efficiency of the collector. More specifically, the use of nanofluids increases the collector efficiency by 4.25% while the geometry improvement increases the efficiency by 4.55%. Furthermore, collector parameters such as the heat loss coefficient, the exergetic efficiency, the pressure losses and the absorber temperature are presented for all the examined cases. The model is designed with Solidworks and is simulated by its flow simulation studio.

Keywords: PTC; Nanofluids; Thermal enhancements; Dimpled absorber; Solidworks (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (54)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116302464
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:94:y:2016:i:c:p:213-222

DOI: 10.1016/j.renene.2016.03.062

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:94:y:2016:i:c:p:213-222