An exergetically-sustainable operational condition of a photo-biohydrogen production system optimized using conventional and innovative fuzzy techniques
Mortaza Aghbashlo,
Soleiman Hosseinpour,
Meisam Tabatabaei,
Seyed Sina Hosseini,
Ghasem Najafpour and
Habibollah Younesi
Renewable Energy, 2016, vol. 94, issue C, 605-618
Abstract:
The aim of the present study was to perform an exergy-based multi-objective fuzzy optimization of a continuous photobioreactor applied for biohydrogen production from syngas via the water-gas shift reaction by Rhodospirillum rubrum. For this purpose, the conventional and innovative fuzzy optimization techniques coupled with multilayer perceptron (MLP) neural model to optimize the main exergetic performance parameters of the photobioreactor. The MLP neural model was applied to correlate three dependent variables (rational and process exergy efficiencies and normalized exergy destruction) with two independent variables (syngas flow rate and agitation speed). The developed MLP model was then interfaced with three different multi-objective fuzzy optimization systems with independent, interdependent, and locally modified interdependent objectives. The optimization process was aimed at maximizing the rational exergy and process efficiencies, while minimizing the normalized exergy destruction, simultaneously. Generally, the innovative locally modified interdependent objectives fuzzy system showed a better optimization capabilities compared with the other two fuzzy systems. Accordingly, the optimal syngas photo-fermentation for biohydrogen production in the continuous bioreactor corresponded to the agitation speed of 383.34 rpm and syngas flow rate of 13.35 mL/min in order to achieve the normalized exergy destruction of 1.56, rational exergy efficiency of 85.65%, and process exergy efficiency of 21.66%.
Keywords: Continuous photobiological hydrogen production; Exergetic optimization; Multilayer perceptron neural model; Multi-objectives fuzzy optimization techniques; Locally modified interdependent objectives fuzzy system (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116302452
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:94:y:2016:i:c:p:605-618
DOI: 10.1016/j.renene.2016.03.061
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().