Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method
Shouxiang Wang,
Na Zhang,
Lei Wu and
Yamin Wang
Renewable Energy, 2016, vol. 94, issue C, 629-636
Abstract:
Wind speed is the major factor that affects the wind generation, and in turn the forecasting accuracy of wind speed is the key to wind power prediction. In this paper, a wind speed forecasting method based on improved empirical mode decomposition (EMD) and GA-BP neural network is proposed. EMD has been applied extensively for analyzing nonlinear stochastic signals. Ensemble empirical mode decomposition (EEMD) is an improved method of EMD, which can effectively handle the mode-mixing problem and decompose the original data into more stationary signals with different frequencies. Each signal is taken as an input data to the GA-BP neural network model. The final forecasted wind speed data is obtained by aggregating the predicted data of individual signals. Cases study of a wind farm in Inner Mongolia, China, shows that the proposed hybrid method is much more accurate than the traditional GA-BP forecasting approach and GA-BP with EMD and wavelet neural network method. By the sensitivity analysis of parameters, it can be seen that appropriate settings on parameters can improve the forecasting result. The simulation with MATLAB shows that the proposed method can improve the forecasting accuracy and computational efficiency, which make it suitable for on-line ultra-short term (10 min) and short term (1 h) wind speed forecasting.
Keywords: EMD; EEMD; GA; BP neural network; Wind speed forecasting (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (120)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116302865
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:94:y:2016:i:c:p:629-636
DOI: 10.1016/j.renene.2016.03.103
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().