Fluid flow and heat transfer in PCM panels arranged vertically and horizontally for application in heating systems
M.M. Prieto and
B. González
Renewable Energy, 2016, vol. 97, issue C, 331-343
Abstract:
The rectangular panel is within the most common geometries in phase change materials (PCM). Nevertheless, there is a lack of knowledge regarding how the arrangement (vertical or horizontal) and thickness affect heat flux and phase change duration. Such knowledge would be very helpful both in the design of PCM heat exchangers. This paper studies the behavior of the RT60 paraffin, Pr ≈ 330, phase change temperature between 53 and 61 °C; and the fatty acid Palmitic Acid, Pr ≈ 110, phase change temperature of 65 °C. Parametric studies analyzing the influence of: temperature of the walls (5 × 105 < Ra ≤ 2 × 106), phase change processes (melting and solidification), panel position and PCM thickness (aspect ratio1/20 and 3/20) are performed. The flow behavior is analyzed over time using velocity plots and volumetric liquid fraction contours. The formation of Bénard cells and their evolution is described. Free convection dependence of dimensionless string function and Rayleigh number is discussed. Free convection during melting for horizontal panels becomes very important and the mean heat fluxes increase up to twofold compared to vertical panels. For solidification, however, conduction becomes more relevant. The importance of both mechanisms is highlighted by calculating heat transfer rates.
Keywords: Phase change materials; Energy storage; Melting and solidification; Natural convection; Parallelepiped-shaped panels (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116305006
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:97:y:2016:i:c:p:331-343
DOI: 10.1016/j.renene.2016.05.089
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().