A novel control method to maximize the energy-harvesting capability of an adjustable slope angle wave energy converter
Nguyen Minh Tri,
Dinh Quang Truong,
Do Hoang Thinh,
Phan Cong Binh,
Dang Tri Dung,
Seyoung Lee,
Hyung Gyu Park and
Kyoung Kwan Ahn
Renewable Energy, 2016, vol. 97, issue C, 518-531
Abstract:
This paper introduces a novel control approach to maximizing the output energy of an adjustable slope angle wave energy converter (ASAWEC) with oil-hydraulic power take-off. Different from typical floating-buoy WECs, the ASAWEC is capable of capturing wave energy from both heave and surge modes of wave motions. For different waves, online determination of the titling angle plays a significant role in optimizing the overall efficiency of the ASAWEC. To enhance this task, the proposed method was developed based on a learning vector quantitative neural network (LVQNN) algorithm. First, the LVQNN-based supervisor controller detects wave conditions and directly produces the optimal titling angles. Second, a so-called efficiency optimization mechanism (EOM) with a secondary controller was designed to regulate automatically the ASAWEC slope angle to the desired value sent from the supervisor controller. A prototype of the ASAWEC was fabricated and a series of simulations and experiments was performed to train the supervisor controller and validate the effectiveness of the proposed control approach with regular waves. The results indicated that the system could reach the optimal angle within 2s and subsequently, the output energy could be maximized. Compared to the performance of a system with a vertically fixed slope angle, an increase of 5% in the overall efficiency was achieved. In addition, simulations of the controlled system were performed with irregular waves to confirm the applicability of the proposed approach in practice.
Keywords: Wave energy converter; ASAWEC; Oil-hydraulic power take-off; Learning vector quantitative neural network; Control systems (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116305092
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:97:y:2016:i:c:p:518-531
DOI: 10.1016/j.renene.2016.05.092
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().