EconPapers    
Economics at your fingertips  
 

Experimental study on kinetic energy conversion of horizontal axis tidal stream turbine

Jeonghwa Seo, Seung-Jae Lee, Woo-Sik Choi, Sung Taek Park and Shin Hyung Rhee

Renewable Energy, 2016, vol. 97, issue C, 784-797

Abstract: The present study aims to understand the energy conversion mechanism of a 100 kW horizontal axis tidal stream turbine by analyzing thrust, torque, and wake flow measurements. The scale ratio of the turbine model was 1/20 and model tests for power and wake measurements were conducted in a towing tank facility. Wake fields were measured by a towed underwater stereoscopic particle image velocimetry (SPIV) system. The chord-length based Reynolds number at 40% of the radius of the turbine ranged from 53,000 to 63,000 in the test conditions. The turbine model showed the highest power coefficient at a tip speed ratio (TSR) of 3.5, and the magnitude of power coefficient was 0.278. Three TSR conditions were selected for SPIV measurement after power measurement tests, representing heavy loading, highest efficiency, and light loading, respectively. In the wake field measurement results, conversion of kinetic energy of the turbine wake was investigated, decomposing it into effectively extracted work, loss due to the drag on the turbine system, kinetic energy of the time-mean axial flow, local flow structures, turbulence, and secondary flow loss. In high TSR conditions with a small angle of attack onto the turbine blade, the secondary flow loss was minimized.

Keywords: Tidal stream turbine; Hydrokinetic energy; Wake measurement; Particle image velocimetry; Towing tank (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116305651
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:97:y:2016:i:c:p:784-797

DOI: 10.1016/j.renene.2016.06.041

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:97:y:2016:i:c:p:784-797