EconPapers    
Economics at your fingertips  
 

Coupling of aerobic/anoxic and bioelectrogenic processes for treatment of pharmaceutical wastewater associated with bioelectricity generation

Dileep Kumar Yeruva, G. Velvizhi and S. Venkata Mohan

Renewable Energy, 2016, vol. 98, issue C, 171-177

Abstract: A sequential treatment strategy designed by integrating sequencing batch (anoxic/aerobic operation) reactor (SBR) with bio-electrochemical treatment (BET) was studied to enhance the remediation of real-field pharmaceutical wastewater (PW). Study was carried out by feeding PW to two SBR systems operated under aerobic (SBRAe) and anoxic (SBRAx) microenvironments. Comparatively higher substrate degradation (SD) and multi-pollutant removal was observed with SBRAx (68.69%) in comparison to SBRAe (60.27%), due to the switching of bacterial metabolism that facilitates redox reactions. In order to further enhance the treatment efficiency, the effluents resulting from SBRAx were fed to BET1 and SBRAe to BET2. Relatively higher bioelectrogenic activity and SD were exhibited by BET1 (Voltage: 536 mV; current: 1.21 mA; SD: 75%) than BET2 (Voltage: 323 mV; current: 2.67 mA; SD: 73%). Self-induced bio-potential developed in BET system due to electrode assembly enabled higher organic and inorganic compounds removal than SBR. Study illustrated the advantage of integration strategy in enhancing the treatment of PW with simultaneous bioelectricity generation.

Keywords: Microbial fuel cell; Bioelectrochemical system (BES); Total Dissolved solids; Sequencing batch reactor; Solid electron acceptor (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116302993
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:98:y:2016:i:c:p:171-177

DOI: 10.1016/j.renene.2016.04.006

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:98:y:2016:i:c:p:171-177