Investigation of 3D printed Savonius rotor performance
Burcin Deda Altan,
Gurkan Altan and
Volkan Kovan
Renewable Energy, 2016, vol. 99, issue C, 584-591
Abstract:
In this study increasing the performance of Conventional Savonius wind rotor has been investigated by a 3D (three dimensional) printer which is one of the rapid prototyping techniques. For this purpose, some design changes have been introduced to increase the performance of conventional Savonius wind rotor. Here, 3D digital designing of Savonius wind rotors have been easily manufactured tangible as a physical model by a 3D printer. Experimental data concerning produced Savonius wind rotors have been acquired by using a wind tunnel. Some numerical data have been obtained from the CFD (Computational Fluid Dynamics) analysis carried out under the same conditions. The effects of the additional blade end design have been examined to obtain more torque increase on improved classical Savonius wind rotor. Furthermore, by means of introducing straight blade, the effects of the flow compression inside the blade have been reduced and rotor performance increased. Based on such optimizations, optimum additional design parameters have been designated as that (1/r) ratio is 0.3, (s/r) is 1, and (α) additional straight blade angle is 135°. It has been determined that power coefficient is increased at a ratio of around 20% together with all these design changes.
Keywords: Savonius rotor; 3D printing; Performance (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116306395
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:99:y:2016:i:c:p:584-591
DOI: 10.1016/j.renene.2016.07.043
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().