Extending thermal response test assessments with inverse numerical modeling of temperature profiles measured in ground heat exchangers
J. Raymond,
L. Lamarche and
M. Malo
Renewable Energy, 2016, vol. 99, issue C, 614-621
Abstract:
Thermal response tests conducted to assess the subsurface thermal conductivity for the design of geothermal heat pumps are most commonly limited to a single test per borefield, although the subsurface properties can spatially vary. The test radius of influence is additionally restricted to 1–2 m, even though the thermal conductivity assessment is used to design the complete borefield of a system covering at least tens of squared meters. This work objective was therefore to develop a method to extend the subsurface thermal conductivity assessment obtained from a thermal response test to another ground heat exchanger located on the same site by analyzing temperature profiles in equilibrium with the subsurface. The measured temperature profiles are reproduced with inverse numerical simulations of conductive heat transfer to assess the site basal heat flow, at the location of the thermal response test, and evaluate the subsurface thermal conductivity, beyond the thermal response test. Paleoclimatic temperature changes and topography at surface were considered in the model that was validated by comparing the thermal conductivity estimate obtained from the optimization process to that of a conventional thermal response test.
Keywords: Geothermal; Heat pump; Heat exchanger; Thermal response test; Temperature profile; Thermal conductivity (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116306012
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:99:y:2016:i:c:p:614-621
DOI: 10.1016/j.renene.2016.07.005
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().