EconPapers    
Economics at your fingertips  
 

Modeling of beech wood pellet pyrolysis under concentrated solar radiation

Kuo Zeng, José Soria, Daniel Gauthier, Germán Mazza and Gilles Flamant

Renewable Energy, 2016, vol. 99, issue C, 721-729

Abstract: A two-dimensional, unsteady CFD (Computational Fluid Dynamics) single particle model was developed and used to simulate the solar pyrolysis process of beech wood pellets (10 mm in diameter and 5 mm in height). Pseudo-stoichiometric coefficients about the mass fraction of primary tar converted by the reaction into gas and secondary tar were determined at different temperatures and heating rates for the first time. The 2D model predictions were successfully validated with tests performed at 600 °C to 2000 °C final temperature, with 10 and 50 °C/s heating rates. The evolution of the final products and mass losses of pyrolyzed biomass are enhanced with temperature and heating rate. Moreover, the higher the temperature and heating rate, the higher the gas yield. This emphasizes the intra-particle tar secondary reaction into gas for pyrolysis of large size sample under high temperature and heating rate.

Keywords: Biomass pyrolysis; Concentrated solar radiation; CFD model; Product yield; Temperature; Heating rate (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116306668
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:99:y:2016:i:c:p:721-729

DOI: 10.1016/j.renene.2016.07.051

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:99:y:2016:i:c:p:721-729