Large-scale experiments on the behaviour of a generalised Oscillating Water Column under random waves
Antonino Viviano,
Stefania Naty,
Enrico Foti,
Tom Bruce,
William Allsop and
Diego Vicinanza
Renewable Energy, 2016, vol. 99, issue C, 875-887
Abstract:
This work investigates wave reflection and loading on a generalised Oscillating Water Column (OWC) wave energy converter by means of large scale (approximately 1:5–1:9) experiments in the Grosse Wellenkanal (GWK), in which variation of both still water depth and orifice (PTO) dimension are investigated under random waves. The model set-up, calibration methodology, reflection analyses and loadings acting on the OWC are reported. On the basis of wave reflection analysis, the optimum orifice is defined as that restriction which causes the smallest reflection coefficient and thus the greatest wave energy extraction. Pressures on the front wall, rear wall and chamber ceiling are measured. Maximum pressures on the vertical walls, and resulting integrated forces, are compared with available formulations for impulsive loading prediction, which showed significant underestimation for heaviest loading conditions.
Keywords: Wave energy converter; Oscillating Water Column; Physical model; Wave reflection (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116306826
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:99:y:2016:i:c:p:875-887
DOI: 10.1016/j.renene.2016.07.067
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().